Contact Tracing and Epidemic Intervention via Deep Reinforcement Learning

نویسندگان

چکیده

The recent outbreak of COVID-19 poses a serious threat to people’s lives. Epidemic control strategies have also caused damage the economy by cutting off humans’ daily commute. In this article, we develop an Individual-based Reinforcement Learning Control Agent (IDRLECA) search for smart epidemic that can simultaneously minimize infections and cost mobility intervention. IDRLECA first hires infection probability model calculate current each individual. Then, probabilities together with individuals’ health status movement information are fed novel GNN estimate spread virus through human contacts. estimated risks used further support RL agent select individual-level epidemic-control actions. training is guided specially designed reward function considering both intervention effectiveness control. Moreover, design constraint control-action selection eases its difficulty improve exploring efficiency. Extensive experimental results demonstrate suppress at very low level retain more than 95% mobility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidemic Contact Tracing via Communication Traces

Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may p...

متن کامل

Shared Autonomy via Deep Reinforcement Learning

In shared autonomy, user input is combined with semi-autonomous control to achieve a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer the goal from user input and assist with the task. Such methods tend to assume some combination of knowledge of the dynamics of the environment, the user’s policy given their goal, and the set of possible goals the user might ...

متن کامل

Inverse Reinforcement Learning via Deep Gaussian Process

We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Inco...

متن کامل

Strategic Dialogue Management via Deep Reinforcement Learning

Artificially intelligent agents equipped with strategic skills that can negotiate during their interactions with other natural or artificial agents are still underdeveloped. This paper describes a successful application of Deep Reinforcement Learning (DRL) for training intelligent agents with strategic conversational skills, in a situated dialogue setting. Previous studies have modelled the beh...

متن کامل

Learning to Perform Physics Experiments via Deep Reinforcement Learning

When encountering novel objects, humans are able to infer a wide range of physical properties such as mass, friction and deformability by interacting with them in a goal driven way. This process of active interaction is in the same spirit as a scientist performing experiments to discover hidden facts. Recent advances in artificial intelligence have yielded machines that can achieve superhuman p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Knowledge Discovery From Data

سال: 2023

ISSN: ['1556-472X', '1556-4681']

DOI: https://doi.org/10.1145/3546870